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Medium vibration properties to characterize interface layers and quality of bonding can be examined
by an ordinary approach using homogeneous waves or by a more general inhomogeneous~or
complex harmonic! wave scattering technique. It is known that only particular inhomogeneous plane
waves can stimulate eigenvibrations of a given structure, and not the homogeneous wave. The
reflection and transmission of such inhomogeneous waves is investigated for plane parallel
interfaces as well as their scattering at periodically corrugated boundaries between liquid and solids.
The influence of plate thickness, corrugation periodicity, and height on the occurrence of specific
plate modes is examined. Using an alternative description of a bounded ultrasonic beam as a finite
superposition of inhomogeneous waves, this theory can be applied to examine the deformation of
Gaussian profiles and to explicitly relate this deformation to the stimulation of mode vibrations. The
generation of a plate—or interface—mode by an obliquely incident single inhomogeneous wave on
a plane parallel plate—or half-space interface boundary—and the scattering of inhomogeneous
waves at the interface wave stimulated corrugated surface, also suggest a new interpretation of back
reflection and transmission of bounded beams at smooth liquid–solid interfaces. ©1996
Acoustical Society of America.

PACS numbers: 43.35.Pt

INTRODUCTION

Although most attention is usually focused on classical
plane homogeneous waves, inhomogeneous waves, with an
exponentially decaying amplitude~represented by the param-
eterb! along the plane-wave front, are the most general so-
lution of the wave equation for a homogeneous and isotropic
linearly viscoelastic material. These waves are also often
called heterogeneous waves or complex harmonic waves be-
cause of their theoretical description by means of a complex
valued wave vector.1–3 On the other hand, the mathematical
representation of any type of surface wave~leaky Lamb or
Rayleigh waves and Stoneley waves! is locally a combina-
tion of such heterogeneous waves and cannot be described in
terms of homogeneous waves.4 Therefore it may not seem
surprising at all that~in general! only inhomogeneous waves
are the real stimuli of material vibrations.

In this work we focus on the excitation of surface waves
as a consequence of bulk ultrasonic wave interaction with
periodic rough surfaces. This topic has been studied in detail
by quite a number of scientific groups employing a large
variety of approximations. We refer the reader to the intro-
duction and review of Bishop and Smith5 and to the book of
Maystre6 for a detailed overview of all methods used to
study diffraction gratings and for a nearly complete list of
the most important references on this subject. A survey of
the literature immediately brings to light that most of the
theoretical and experimental reports deal with the case of
incident plane homogeneous waves. However, in recent
years we have been convinced both by theoretical and ex-

perimental evidence that a study of complex harmonic waves
generally reveals much more information about the scanned
medium.3,7–9 Therefore we generalized the scattering model
to account for bulk inhomogeneous plane-waves incident on
periodic rough surfaces. We use the oldest and simplest tech-
nique to calculate scattering from a periodic surface as de-
veloped by Rayleigh,10 realizing very well that this hypoth-
esis has been a subject of controversy since the early
1950s.11–14 Strikingly enough, none of the more advanced
theoretical approaches seems to agree on the exact limits of
validation of the Rayleigh hypothesis~see Ref. 5 for a dis-
cussion!. Qualitatively, the assumptions are believed to be
valid in cases where the wavelength of the incident sound
beam is of the same order of magnitude as the periodicity
and much larger than the depth of the grating.

We start with the case of plane parallel interfaces and
illustrate the importance of complex harmonic waves in con-
nection with plate mode stimulation~Sec. I A!. Next, we
study the case of a plate with a periodically corrugated sur-
face at the top and a plane interface at the bottom. The scat-
tering process is established due to the periodic boundary
conditions at the top surface. In this paper we limit our study
to normal incidence. We will show that the anomalies in the
amplitudes of the diffraction orders can be explained as par-
ticular conditions for eigenvibrations of the structure. We
will not consider other anomalies such as Brewster angle
anomalies and Wood P anomalies, which occur as a conse-
quence of the behavior of the modal spectrum of the rough
surface rather than being produced by excitation of the struc-
ture eigenvibrations. We refer the reader to the work of De-
Santo for that manner.15 The location of eigenvibrations for
the corrugated specimen can be deduced from the dispersion
curves of a sample with plane parallel interfaces. Just as for

a!Postdoctoral fellow of the Belgian National Fund for Scientific Research.
Presently at EES-4, MS D443, Los Alamos National Laboratory, Los Ala-
mos, New Mexico 87545.

2883 2883J. Acoust. Soc. Am. 99 (5), May 1996 0001-4966/96/99(5)/2883/15/$6.00 © 1996 Acoustical Society of America

Downloaded 03 Jul 2012 to 192.12.184.7. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



the smooth plate, we find that the inhomogeneous plane
waves are the real stimuli of eigenvibrations, not the homo-
geneous plane waves. We illustrate this for several Lamb
modes in a corrugated plate~Sec. I B! and for Rayleigh and
Stoneley resonances at a corrugated interface between half-
spaces~Sec. II!. In Sec. III, we investigate the influence of
plate thickness and corrugation profile~shape, periodicity,
and height! on the resonance characteristics of a particular
mode. We also point out some independence relations that
can be important for scaling problems to laboratory research
models. Section IV deals with bounded beam scattering on
periodic rough surfaces. We use a previously reported alter-
native description of a bounded beam in terms of a finite
number of inhomogeneous plane waves7–8 to explicitly relate
beam deformation to the generation of plate/interface waves.
The scattering properties of complex harmonic waves can be
applied to investigate symmetry conditions, beamwidth in-
fluence, and multiple mode occurrences. Finally, in Sec. V,
we launch an alternative concept for the physical mechanism
that leads to the observation of backscattering~backreflection
and backtransmission! when bounded beams interact with
plane parallel plates.16–19 The idea is based on inhomoge-
neous wave mode stimulation in combination with scattering
from a self-supported corrugated surface.

I. SCATTERING FROM A SOLID PLATE IMMERSED IN
A LIQUID

A. Plane parallel interfaces

The dispersion curves for a 2-mm-brass plate with plane
parallel interfaces immersed in water are given in Fig. 1,
calculated using the following medium parameters:

Water: longitudinal velocity:nl51480 m/s;
attenuation:alv

25431028 Np/mm at 1 MHz with
v52p f ;
density: 1000 kg/mm3.

Brass: dilatational velocity:nd54840 m/s;
dilatational attenuation:adv

25431026 Np/mm at 1
MHz;
shear velocity:ns52270 m/s;
shear attenuation:asv

25231025 Np/mm at 1 MHz;
density: 8100 kg/mm3.

Let f be the frequency,uinc the angle of incidence, andnm
the mode velocity along the surface. From a theoretical point
of view, the dispersion curves correspond to the ‘‘f -uinc’’
combinations or equivalently ‘‘f -nm’’ combinations for
which the denominator of the reflection coefficient of a plane
wave vanish. Expressions for the reflection and transmission
coefficients can be found in many textbooks.4,20,21The zero’s
correspond to two families of modes: symmetric~S! and
asymmetric~A! modes. We notice that five different mode
singularities can be obtained for different angles of incidence
at a frequency of 1.5 MHz:A0, S0, A1, S1, andS2 ~circles in
Fig. 1!. The interpretation is that each singularity represents
a vibration of the solid layer that propagates laterally inside
the plate. In addition, a singularity occurs at the Stoneley
wave velocity ~1478 m/s for water/brass systems!, corre-
sponding to an angle of incidence parallel to the interface
~square in Fig. 1!. In contrast to the other five modes the

displacement of the Stoneley mode is mostly located in the
liquid. All these modes are so-called eigenmodes of the
liquid–solid–liquid system and thus exist permanently. They
can be stimulated under certain circumstances, analogous to
the resonance of a spring at forced oscillation.

The reflection coefficient~in dB! as a function of the
incidence angle~250–150 deg! for a homogeneouswave at
1.5 MHz is visualized in Fig. 2~a!. For each mode one ob-
serves a sharp dip in the reflection coefficient. Although
these null positions are often interpreted as stimulations of
the eigenmodes of the system, this interpretation is incorrect.
Stimulation of a particular eigenmode does not happen when
the reflection coefficient vanishes. Since the zeroes of the
denominator of the reflection coefficient represent complex
wave numbers, stimulation occurs only for incidentinhomo-
geneous waves, often also called heterogeneous or complex
harmonic waves. In order to substantiate this statement we
plotted in the same figure the reflection moduli for specific
inhomogeneous waves. The parameterbinc in Fig. 2~b!–~f! is
related to the imaginary part of the wave number at the sin-
gularity and corresponds to the heterogeneity parameter~ex-
ponential decay of the wave profile along the wavefront!
characteristic for a complex harmonic wave.~For a complete
description of an inhomogeneous plane wave, see Refs. 1–3
and 7–9.! We observe that the modulus of the reflection
coefficient exhibits a maximum at the mode positions ofS2,
S1, A1, S0, andA0 for certain particular values of the het-
erogeneity parameter. Note that in those circumstances the
reflection modulus acquires a value much larger than unity.
Moreover, in Fig. 3 we compare the displacements inside the
plate for the homogeneous and the specific inhomogeneous
wave that corresponds to the resonance of theA1 mode ~f
51.5 MHz, uinc525.513°!. It is clear that this asymmetrical
vibration is highly stimulated by the incident inhomogeneous
wave with a heterogeneity parameterbinc equal to20.0651
mm21. Thus apart from frequency and angle of incidence~or
mode velocity!, the stimulation of vibrational modes strongly
depends also on another parameter, namely, the heterogene-

FIG. 1. Dispersion curves for a smooth 2-mm-thick brass plate immersed in
water. The vertical axis on the right-hand side corresponds to the angle of
incidence for which plate modes are generated using bounded beams. The
scale is not linear as the values on this axis correspond to ArcSin~1480.0/
mode velocity!.
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ity parameterbinc . This is also true for half-spaces and more
complicated structures.

Recently, Deschamps9 reported the first experimental
observation ever of reflection and transmission coefficients
larger than unity using incident bulk inhomogeneous waves.
His observations confirm theoretical predictions and form
strong evidence that only inhomogeneous waves can stimu-
late eigenmodes in plates.

B. Periodically corrugated surfaces

The study of layered structures with plane parallel inter-
faces and the interaction of ultrasonic waves with materials

having periodic rough surfaces have been topics of growing
interest in many fields of NDT. Gratings are favorite prob-
lems for spectroscopists, but oceanographers are also inter-
ested in studying sound scattering by rough surfaces, e.g., the
ocean surface. Indeed, the topic of sound scattered from pe-
riodic corrugated surfaces has been frequently examined;
however, only a few studies have investigated the scattering
process for inhomogeneous waves.22,23 Most theoretical ap-
proaches and experimental reports deal with the case of in-
cident homogeneous plane waves at normal incidence. Ex-
actly as in the case of plane interfaces, the observed features
for binc50 at different frequencies are usually associated
with the generation/stimulation of eigenmodes of the struc-
ture. This is true, but only partly, because, again, the intro-
duction of inhomogeneous waves is required to describe ex-
actly how these constructive interference vibrations are
generated.

Figure 4 shows a scheme of the geometry for an arbi-
trary ~upper! corrugated solid layer. Thex axis ~z50! is
chosen to be the mean of the roughness profileF. Here,h is
the peak-to-peak amplitude of the surface roughness,L is the
profile periodicity, andd is the average thickness of the
layer. In this geometry the solid layer extends between
z5F(x) and z5d. We will consider the case of a general
plane inhomogeneouswave ~with exponentially decaying
amplitude along its wavefront as shown in Fig. 4! incident in
thex-z plane. We assume noy dependence. In this article we
will limit ourselves to normal incidence. As an example we
consider a 2-mm-brass plate with a corrugated upper surface
~sawtooth or sine profile! and a plane boundary at the lower
surface. The periodicity of the profile~L! is 2.2 mm and the
height ~h! of the corrugation is 50 mm. The brass layer is
immersed in water. Since the conditions at the upper surface
are periodic along that interface, it is assumed that the math-
ematical solution of the~inhomogeneous! reflected and trans-
mitted ultrasonic fields, as well as the~inhomogeneous! lon-
gitudinal and shear waves propagating inside the plate, can
be represented by a Fourier series in the coordinate along the
interface. This means that the incident energy will be scat-
tered in several plane inhomogeneous waves having different

FIG. 2. Reflection coefficient~in dB! as a function of the incidence angle~in
degrees! for a homogeneous plane wave~a! and particular mode stimulating
inhomogeneous plane waves~b!–~f! on a 2-mm smooth brass plate at 1.5
MHz.

FIG. 3. RelativeA1 displacement components inside a 2-mm brass plate
generated at 1.5 MHz for incidence angleuinc526.07° by~a! a homogeneous
plane wave~binc50.0 mm21!, ~b! theA1 mode stimulating inhomogeneous
plane wave~binc520.0651 mm21!.

FIG. 4. Geometry of the two-dimensional diffraction problem for inhomo-
geneous plane waves at normal incidence.
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directions in reflection and transmission. Also, inside the
plate different orders will be generated which travel with
different group velocity projections along the interface. This
assumption corresponds to Rayleigh’s basic idea10 and al-
though its validity is questioned by many scientists,11–14 its
simplicity opens perspectives for a straightforward under-
standing of the physics behind the problem.

Following a similar theoretical treatment for
solid–vacuum,22 liquid–solid,24 or solid–liquid25 half-space
interfaces, the system of linear equations that result from the
implementation of the six boundary conditions for the re-
flected, transmitted, and in-plate generated waves, can be
written as follows:
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2 are the unknown reflection, transmission, and

up- and downgoing dilatational and shear wave coefficients;
r is the ratio of solid density to liquid density;kl , kd , andks
are complex-valued medium characteristics defined as fol-
lows:
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andkx
inc is the wave-vector component of the incident wave

projected on the virtual average surface~z50!. For inhomo-
geneous waves~bincÞ0!, this quantity is defined in
general7–9 as

kx
inc5kinc sin u inc1 ia inc sin u inc2 ib inc cosu inc , ~3!

whereuinc is the angle of incidence andkinc , ainc , andbinc ,
are the 3 specific characteristics~wave number, attenuation,
and heterogeneity! of the incident wave satisfying the com-
plex valued dispersion relation:
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~in the case of normally incident inhomogeneous waves, we
simply have thatkx

inc 5 2 ib inc andK inc5kinc1ia inc!. Also in
Eq. ~1!, km is the wave-vector component of themth-order
scattered wave projected on the surface which obeys the gen-
eralized Snell laws for periodic gratings, i.e.,

km5kx
inc1m~2p/L! for all integer values ofm. ~6!

This component is identical for reflected, transmitted, and
in-plate generated waves within each order.

Further, the following familiar definitions were used de-
fining the magnitude of thez components of the scattered
waves in themth order:
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The linear system represented by Eq.~1! is in fact an infinite
system of coupled linear equations, however, in order to
implement it numerically one is obliged to truncate it to a
finite orderM , neglecting all reflected, transmitted, and in-
plate scattered orders with indices in absolute value ofM11
or larger. In all of the illustrations shown in this paper an

2886 2886J. Acoust. Soc. Am., Vol. 99, No. 5, May 1996 Van Den Abeele et al.: Inhomogeneous plane-wave scattering

Downloaded 03 Jul 2012 to 192.12.184.7. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



approximation to order 4 was found to be sufficient based on
the criterion that the inclusion of the fifth order in the calcu-
lations did not affect the reflection coefficients of order24
through 4 by more than 2 dB.

This system is valid for homogeneous waves as well as
for inhomogeneous waves with complex wave numbers. The
characteristics of the generated waves@i.e., the scattering
angle~measured from the positivez-axis counterclockwise!,
heterogeneity coefficient, and positive-valued wave number
and attenuation parameters# can be obtained from a combi-
nation of the complex-valued grating equation@Eq. ~6!# and
the dispersion equation@Eq. ~7!#. For instance for the in-plate
dilatational wave of orderm, udm , bdm , kdm , andadm can be
calculated by representing thex andz components~km and
Kdm! by

kdm sin udm1 iadm sin udm2 ibdm cosudm

and

kdm cosudm1 iadm cosudm1 ibdm sin udm ,

respectively, which translates Eqs.~6! and ~7! to
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Similar systems of equations have to be solved to get the
characteristics of the reflected, transmitted, and in-plate shear
waves. Particular attention has to be paid to the sign of the
z-axis projection of the wave numbers. The magnitude of
thesez projections is defined by Eq.~7!, their sign remains
ambiguous. In the case of plane homogeneous waves we
determine the sign of all scattered waves in the different
orders by the Sommerfeld conditions, saying that no scat-
tered waves can be generated with exponentially growing
amplitude away from an interface. The Sommerfeld condi-
tions do not hold any more when we are dealing with inci-
dent bulk inhomogeneous waves. As we know, the scattered
waves in reflection and transmission can be bulk inhomoge-
neous waves as well. In reflection and transmission we re-
quire thatKrm andKtm have the appropriate sign so that they
represent waves that are propagating away from the outside
surfaces of the plate, i.e., Re(Krm)<0 and Re(Ktm)>0. Fur-
ther, we determine the sign ofKdm andKsm as follows:

Define dilatational (p5d) and shear (p5s) critical
angles as follows:

up
cr5Arcsin~n l /np!.

If @1802 up
cr. u rmandbrm.0# or

@1801up
cr,u rm andbrm,0# then Sign„Re(Kpm)… equals

21;
or equivalently Kpm:52uRe(Kpm) u2iSign„Re(Kpm)…
•Im(Kpm).
In all other cases Sign„Re(Kpm)… should be 1.

These conditions correspond to a generalized version of
the criteria reported by Deschamps9 in his theoretical and
experimental study of the reflection~and transmission! of a
bulk inhomogeneous wave incident on a liquid–solid and
liquid–solid–liquid system with plane interfaces. He showed
that special attention needs to be given to the twofold solu-
tion of the generalized Snell laws in order to match the ex-
perimental data to the theoretical prediction.

In Fig. 5~a! we show the reflection coefficientR0 ~specu-
lar reflection! as a function of frequency in the case of a
homogeneous plane wave at normal incidence. The scattered
orders in reflection@R61, R62, R63, andR64 ~all in dB!# are
depicted in Fig. 5~b!. In the frequency interval ranging from
0.5 to 3 MHz we observe quite a number of ‘‘anomalies’’ in
the reflection coefficient, as well in the specular reflection
direction as in the scattered orders. The position of the dif-
ferent features at various frequencies can be explained by
taking a close look at Fig. 6. First of all, two major dips
occur inR0 at 1.21 and 2.42 MHz. These anomalies corre-
spond to the ‘‘limiting’’ frequencies of the longitudinal reso-
nancesS2 andA3 at normal incidence for a smooth 2-mm-
thick brass plate~indicated on top of Fig. 6 by the italicized-
underlined numbers: 1.210 and 2.420 MHz!. Since the height
of the corrugation is taken to be much smaller than the plate
thickness, we are still able to observe these so-called cutoff
modes. All other ‘‘limiting’’ frequencies ~nonitalicized-
underlined numbers on top of Fig. 6! correspond to shear

FIG. 5. ~a! R0 modulus for a homogeneous wave normally incident on a
sawtooth corrugated brass plate in water~d52 mm,L52.2 mm,h550mm!.
~b! Moduli of the diffracted orders in reflection for a homogeneous wave~in
dB! @same plate parameters as in~a!#.
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resonances at normal incidence and cannot be generated by a
pure longitudinal incident plane wave atu50° because the
in-plate displacement in this case is also strictly in thez
direction. A second group of features corresponds to fre-
quencies at the intersection points of the dispersion curves
for a smooth brass plate of 2 mm with the lines

n5 fL/m, for m51,2,3,4,..., ~11!

in which n denotes the velocity along the water/brass sur-
face, f is the frequency, andL is the corrugation periodicity.
The cuttoff frequencies~representing the first group of fea-
tures! correspond to the special case for whichm50. At
every frequency corresponding to an intersection of these
lines with the dispersion curves, an anomaly is observed. A
last group corresponds to the intersection points of the hori-
zontal line at the Stoneley velocity~1478.0 m/s! and the
above-mentioned straight lines for different~nonzero! inte-
ger values ofm. Classically, all these frequency positions for
which anomalies occur in the reflection coefficients, are in-
terpreted as ‘‘critical’’ frequencies for which a homogeneous
wave can stimulate a specific eigenmode of the system. This
is only partly true however. We note that the only features
for which we observe sharp peaks~larger than 0 dB! in the
coefficientsRm for each value ofm, occur at frequencies
corresponding to intersections of the straight lines with the
horizontal line at the Stoneley velocity, i.e., exactly at every
multiple of 0.6718 MHz. These are indeed the only condi-
tions in which a homogeneous wave can generate and stimu-
late a surface wave, in this case a Stoneley wave. Depending
on the value ofm at the interaction point the Stoneley wave
shows up as the diffracted wave of that specific order, but in
all cases it has the same characteristic exponential decay~af-
ter normalizing by frequency!. SinceRm equalsR2m for ho-
mogeneous waves, Stoneley waves are created in both direc-
tions along the surface.

We emphasize once more that no other plate mode is
generated nor stimulated by an incident homogeneous wave
at normal incidence. The scattered orders in reflection and
transmission corresponding to propagating waves away from
the upper and lower surfaces are all homogeneous waves and

as a consequence they cannot satisfy the properties of the
leaking field typical for a particular Lamb mode of the sys-
tem.

Just like in the case of plane interfaces, we have to con-
sider the scattering of the more general complex harmonic
wave to accurately describe plate-mode stimulation for cor-
rugated layers at normal incidence. Each feature observed in
the reflection coefficient of homogeneous waves can get ar-
bitrarily large by insonifying the plate at normal incidence
with an inhomogeneous wave with the appropriate value for
the heterogeneitybinc . Figures 7–12 illustrate this for three
of the predicted anomalies.

In Fig. 7 we show the reflection moduli for an incident
inhomogeneous wave with exponential decaybinc50.061065
mm21. At this heterogeneity value, theR21 reflection coef-
ficient @along with the T21 transmission coefficient~not
shown!# exhibits a well pronounced maximum atf51.53053
MHz. This means that these parameter conditions are favor-
able for the generation and stimulation of theA1-plate mode
in the21st diffraction order. The21st-order scattered wave
reflects at an angle of 206.073°~measured counterclockwise
from the positivez axis! and has an exponential decay of
20.06796 mm21. These are exactly the characteristics of the
first asymmetric eigenmode in a smooth brass plate at
1.53053 MHz. Moreover, the surface wave velocity and dis-
placement vector inside the corrugated plate agrees with the
velocity and displacement calculations for theA1 mode in a
plane-parallel 2-mm brass plate at that frequency. Figure 8

FIG. 7. Moduli of the diffracted orders in reflection for theA1 mode stimu-
lating inhomogeneous wave~binc50.061065 mm21! in 21st diffraction or-
der at 1.53 MHz.@Same plate parameters as in Fig. 5~a!.#

FIG. 6. Mode identification figure at normal incidence for a 2-mm-thick
brass plate with periodical corrugated surface~L52.2 mm!.
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compares the in-plate displacements for the homogeneous
and specific inhomogeneous wave at 1.53053 MHz. All dis-
placements shown are calculated relative to the displacement
of the incident wave at the~virtual! position ‘‘x50, z50.’’
In the first column@Fig. 8~a! and~c!# we plotted the relative
displacements calculated for the21st diffraction order only.
The second column@Fig. 8~b! and ~d!# illustrates the total
in-plate relative displacement, calculated from the interfer-
ence of all~negative and positive! orders. Four observations
can be made:~1! the A1 asymmetrical vibration mode is
highly stimulated by the incident inhomogeneous wave, or-
ders of magnitude larger than in the case of a homogeneous
plane wave;~2! ~as indicated above! the homogeneous plane
wave only accounts for a globalz displacement inside the
plate ~no net shear displacement!, which is quite different
from the displacement in one separate diffraction order;~3!
the in-plate displacement calculated for the specific mode
stimulating complex harmonic wave over all diffraction or-
ders is not much different from the displacement in the21st
order only, indicating that all of the energy is concentrated in
that scattering order~the interference with other orders is
negligible!; and ~4! since only small and gradual corruga-
tions are taken into account~Rayleigh assumption!, the dis-
placement fields at resonance conditions show either sym-
metrical or asymmetrical behavior even though the layer
interfaces are not similar. Clearly this will not be the case
when steep gradients occur in the profile and ‘‘standing’’
waves have to be taken in consideration between profile el-
evations.

Since no previous treatments of plane inhomogeneous
wave scattering and mode stimulations are known to us, we
include two other examples to demonstrate these four obser-
vations. Figures 9 and 10 illustrate the stimulation of theA1
asymmetrical vibration mode in22nd diffraction order for
binc50.04377 mm21 at a frequency of 2.300 MHz. The in-
cident complex harmonic wave again induces a much higher
excitation level compared to the homogeneous wave. Note
for instance the large reflection coefficientR22, and the huge
relative in-plate displacements with all the energy confined
in the22nd diffraction direction. Figures 11 and 12 finally,
visualizes the results for theS0 stimulation in the21st dif-
fraction order at 1.09374 MHz by an inhomogeneous wave
with heterogeneity parameter 0.09454 mm21.

To conclude this section, three additional remarks are in
order: ~1! Due to symmetry properties at normal incidence,
the same eigenmode can be stimulated in positivex direction
~extrema forR1m andT1m! by changing the heterogeneity
of the incident complex harmonic wave from1binc to2binc .
~2! The use of incident inhomogeneous waves can lead to
additional material information since their reflection coeffi-
cients show the extra features which are related to the ‘‘lim-
iting’’ frequencies for shear resonances at normal incidence.
These features appear at the intersection points of the brass
plate dispersion curves andn5infinity ~corresponding to
m50!. ~3! If a system consists of several layers separated by
corrugated interfaces with different periodicities, it is the
least common multiple of all periodicities involved that con-

FIG. 8. Relative displacement components inside the 2-mm rough brass
plate at 1.53 MHz.~a! Calculation for an incident homogeneous wave using
21st diffraction order only.~b! Calculation for an incident homogeneous
wave using interference of all orders.~c! Calculation for the mode stimulat-
ing inhomogeneous wave using21st diffraction order only.~d! Calculation
for the mode stimulating inhomogeneous wave using interference of all
orders.

FIG. 9. Moduli of the diffracted orders in reflection for theA1 mode stimu-
lating inhomogeneous wave~binc50.04377 mm21! in 22nd diffraction or-
der at 2.3 MHz.@Same plate parameters as in Fig. 5~a!.#
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trols the diffraction of a plane wave. In the case of two
different periodicitiesL1 andL2 with a least common mul-
tiple L ~and assuming thatL1 andL2 are not integer mul-
tiples of each other!, the number of ‘‘anomaly’’ positions in
a fixed frequency range is greatly multiplied when compared
to a case for which the governing periodicity would be either
L1 or L2. Consequently, in the numerical implementation,
the dimension of the transfer matrix deduced from the linear
system in Eq.~1! increases significantly because more orders
need to be taken into account.

II. SCATTERING FROM A LIQUID–SOLID HALF-
SPACE WITH PERIODICALLY CORRUGATED
SURFACE

In this section we apply the complex harmonic wave
scattering theory at periodic rough surfaces in the case of a
single corrugated boundary between a liquid and a solid half-
space. We will demonstrate that Stoneley and Rayleigh
waves can be stimulated at normal incidence by homoge-
neous and inhomogeneous waves with a proper choice of the
heterogeneity parameter.

A. Water–brass half-space

The Stoneley velocity for a water–brass system with a
plane interface boundary equals 1478.0 m/s, whereas the
Rayleigh velocity is 2128.46 m/s. The absolute value of the
heterogeneity characteristic for the exponential decaying
parts of these surface waves in water at a frequency of 1

FIG. 11. Moduli of the diffracted orders in reflection for theS0 mode stimu-
lating inhomogeneous wave~binc50.09454 mm21! in 21st diffraction order
at 1.094 MHz.@Same plate parameters as in Fig. 5~a!.#

FIG. 12. Relative displacement components inside the 2-mm rough brass
plate at 1.094 MHz.~a! Calculation for an incident homogeneous wave
using21st diffraction order only.~b! Calculation for an incident homoge-
neous wave using interference of all orders.~c! Calculation for the mode
stimulating inhomogeneous wave using21st diffraction order only.~d! Cal-
culation for the mode stimulating inhomogeneous wave using interference
of all orders.

FIG. 10. Relative displacement components inside the 2-mm rough brass
plate at 2.3 MHz.~a! Calculation for an incident homogeneous wave using
22nd diffraction order only.~b! Calculation for an incident homogeneous
wave using interference of all orders.~c! Calculation for the mode stimulat-
ing inhomogeneous wave using22nd diffraction order only.~d! Calculation
for the mode stimulating inhomogeneous wave using interference of all
orders.
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MHz is 0.0937 and 0.0634 mm21, respectively. The liquid
component of the Stoneley wave travels exactly parallel to
the surface. The Rayleigh wave is leaky and radiates in a
direction equal to the Rayleigh angle: 44.048°.

Given this information, Fig. 13 shows the possible criti-
cal frequencies for Stoneley and Rayleigh wave stimulation
at a liquid–brass interface with a 2.2-mm periodic corruga-
tion. We predict that in the frequency range of 0.5 to 3 MHz
it is possible to obtain a Stoneley wave stimulation at four
different frequencies, each time in a different diffraction or-
der. Indeed, Fig. 14 clearly shows four major anomalies in
the reflection moduli for an incident homogeneous plane
wave at normal incidence, occurring at multiple values of
0.6718 MHz. Successive anomalies correspond to extrema in
successively higher-order reflection coefficients and indicate
that the Stoneley wave is stimulated in consecutively higher
scattered orders. Solving the generalized Snell relations, one
can easily verify that the propagation direction of the scat-
tered waves in these orders is parallel to the interface, that
the velocity equals 1478.0 m/s and that the exponentially
decaying component corresponds exactly to the characteris-
tic Stoneley wave decay~when normalized by the fre-
quency!.

Looking again at Fig. 13, we also find three critical fre-
quencies for which Rayleigh wave stimulation may occur: in
first, second, and third order~plus and minus!. In Fig. 15, we
show the stimulation of the21st-order diffracted Rayleigh
wave by a complex harmonic wave with heterogeneity coef-
ficient binc50.04427 mm21. R21 clearly shows a maximum
at 0.9674 MHz. The generalized Snell relations yield a het-
erogeneity parameterbr21520.06159 mm21 ~at 0.9674
MHz! and a direction 44.053° for the scattered inhomoge-
neous wave in the21st diffraction order, which agrees with
the information obtained from the plane boundary calcula-
tions. Because of the excellent agreement of the fundamental
characteristics we may conclude that the wave stimulated in
21st order is really the Rayleigh wave.

B. Water–steel half-space

For a water–steel system~steel parameters: dilatational
velocity: nd55790 m/s; dilatational attenuation:
adv

25431026 Np/mm at 1 MHz; shear velocity:ns53200
m/s; shear attenuation:asv

25231025 Np/mm at 1 MHz;
density: 7900 kg/mm3! with a plane interface boundary the
Stoneley velocity equals 1479.59 m/s, whereas the Rayleigh
velocity is 2959.25 m/s. It is remarkable that the Rayleigh
velocity is approximately twice the value of the Stoneley
velocity. Curiously enough this means that the first~second,
etc....!-order diffracted Rayleigh wave occurs at the same

FIG. 13. Mode identification figure at normal incidence for a water–brass
system with periodical corrugated interface~L52.2 mm!.

FIG. 14. Moduli of the diffracted orders in reflection for an incident homo-
geneous wave at a sawtooth corrugated water–brass interface~L52.2 mm
h550 mm!. Peaks are corresponding to Stoneley-mode stimulation.

FIG. 15. Moduli of the diffracted orders in reflection for the Rayleigh wave
stimulating inhomogeneous wave~binc50.04427 mm21! in 21st diffraction
order at 0.9674 MHz on a corrugated water–brass interface.~Same interface
parameters as in Fig. 13.!
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frequency as the second~fourth, etc....!-order diffracted
Stoneley wave~see Fig. 16!. In Figs. 17 and 18 we evaluated
the region around 1.345 MHz and found indeed that a homo-
geneous wave can stimulate a Stoneley wave in the second
diffracted order at the same frequency for which an inhomo-
geneous wave withbinc50.03082 mm21 stimulates the
minus-first-order diffracted Rayleigh wave. This particular
inhomogeneous wave really stimulates the leaky Rayleigh
wave, even though it may seem as if other diffraction orders
somehow interfere because of their large reflection coeffi-
cients. To prove this, we plotted in Fig. 19 the resulting
relative displacements in the steel half-space for the21st-
order component only and for the total interference of all
orders. It is clear that approximately all of the energy propa-
gates in the21st-order direction, and that thex andz com-
ponents correspond to the commonly known Rayleigh-type
displacements.

III. STUDY OF SOME CORRUGATION PARAMETERS
AND PLATE THICKNESS

A. Corrugation profile: Sawtooth versus sine profiles

Figure 20 compares the theoretical calculations for a
water–brass–water system having a plane lower interface

and an upper interface corrugated by a sawtooth-shaped pro-
file ~open circles! with the results for a sine shaped corruga-
tion ~closed circles! for the same periodicity~2.2 mm! and
height ~150 mm!. One observes no major difference for 0,
61, and62. On the other hand there seems to be quite a
difference for higher diffraction orders. Actually, it is not yet
clear why the difference appears only in the higher orders.

Sine and sawtooth corrugated profiles lead to easy
closed analytical evaluations for the integrals@Eq. ~8!# in-

FIG. 16. Mode identification figure at normal incidence for a water–
stainless steel system with periodical corrugated interface~L52.2 mm!.

FIG. 17. Moduli of the diffracted orders in reflection for an incident homo-
geneous wave at a sawtooth corrugated water-stainless steel interface~L
52.2 mm,h550mm! as a function of frequency, in the neighborhood of the
62nd order Stoneley mode frequency.

FIG. 18. Moduli of the diffracted orders in reflection for the21st diffrac-
tion order Rayleigh wave stimulating inhomogeneous wave~binc50.03082
mm21! at a sawtooth corrugated water–stainless steel interface~L52.2 mm,
h550 mm! in the same frequency range as used in Fig. 17.

FIG. 19. Relative Rayleigh mode displacement components inside the
stainless-steel half-space at 1.345 MHz.~a! Calculation for the Rayleigh
mode stimulating inhomogeneous wave using21st diffraction order only.
~b! Calculation for the Rayleigh mode stimulating inhomogeneous wave
using interference of all orders.
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volved in constructing the transfer matrix. More complicated
corrugations of arbitrary profileF(x) can be analyzed either
by a single FFT evaluation or by use of their Fourier series
expansion. For instance, the second integral in Eq.~8a! can
be evaluated as follows using:
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In view of preceding analysis it is obvious that sawtooth and
sine profiles yield quite similar results. The first term in the
Fourier expansion of a sawtooth profile is essentially equal to
the sine corrugation considered in the comparison. The other

terms in the Fourier series, all with periods that are odd
fractions of the repetition period, are less important and their
contribution is only significant at the levels of the third and
fourth diffraction orders.

Apart from the shape of the corrugation, there are sev-
eral other physical parameters that can change independently
during a production process and need to be controlled by
NDE measurements. In what follows, we investigate the in-
fluence of small deviations in plate thickness, corrugation
periodicity, and corrugation height on the ideal stimulation
characteristics~at normal incidence: frequency and heteroge-
neity parameter! of the A1-Lamb mode in21st diffraction
order. In addition, Figs. 21–23 contain complementary infor-
mation about the shift of the21st diffraction order emission
angle of this particular Lamb mode, which is a tractable and
easy measurable quantity.

B. Plate thickness 1.5 mm <d<3.0 mm (L52.2 mm;
h550 mm)

The plate thickness is certainly one of the most sensitive
parameters. In Fig. 21, we observe that the frequency of the
A1-Lamb mode diminishes monotonically from 1.75 MHz at
1.5 mm to 1.26 MHz at 3.0-mm thickness. The dashed line
connecting the squares represent the thickness dependence of
the emission angle in the21st diffraction order at ideal
stimulation conditions. Again we observe a monotonic be-
havior, a result that could be readily predicted from the dis-
persion curves of plane parallel plates. The heterogeneity
coefficientbinc of the incident complex harmonic wave for
which A1-mode stimulation occurs~full line connected open
circles!, also extends over a wide range, but does not show a
monotonic behavior. A simple calculation of the heterogene-
ity parameter of the21st scattered component in reflection
@based on Eq.~9! for normal incidence# tells us that the leak-
ing field of theA1 mode will show the largest exponential
decay across the wavefront for thicknesses between 1.9 and

FIG. 21. Critical ~f , binc! positions ~full line connected circles! for the
stimulation of theA1 Lamb mode in the21st diffraction order at normal
incidence as a function of the plate thickness~1.5 mm<d<3.0 mm! in the
case of a brass plate with a sawtooth corrugated upper surface~L52.2 mm,
h550mm!. The dashed line connected filled squares illustrate the change in
emission angle~21st-order diffraction angle! due to the variation in plate
thickness.

FIG. 20. Comparison between the moduli of the diffracted orders in reflec-
tion for a sawtooth~open circles! and sinusoidal~filled circles! corrugated
brass plate for an inhomogeneous plane wave~binc50.06 mm21! at normal
incidence~d52 mm,L52.2 mm,h5150mm!.
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2.0 mm. In other words, when applied to an experimental
situation, the leaking field in the21st diffraction order will
be best localized in this range~the A1-mode radiates only
over a small distance!.

It is obvious that plate thickness variations~even over
much smaller intervals than shown here! can be responsible
for dissatisfying a certain known ‘‘resonance’’ condition
used as a prescribed standard norm in a manufacturing pro-
cess. Any small deviation from the ideal mode stimulation
requirements shows up immediately as a loss of leaking en-
ergy in the postulated diffraction order and as a change in
emission angle.

C. Corrugation periodicity 1.5 mm <L<2.5 mm (h550
mm; d52.0 mm)

Analogous conclusions can be drawn when investigating
the influence of the periodicityL of the corrugation. For a
fixed plate thickness and corresponding dispersion curves,
the variation inL clearly affects the frequency and emission
angle of the stimulated plate mode. For instance, the inter-
section point of theA1-mode dispersion curve with the line
n5f •L @Eq. ~11! for m51# moves up or down in frequency
for smaller or larger values of periodicity, respectively. At
the same time, the angle of emission increases~respectively
decreases!. Just like in the study of plate thickness influence,
the heterogeneity coefficientbinc of the ideal incident com-
plex harmonic wave forA1 mode stimulation does not show
a monotonic behavior as a function of periodicity~Fig. 22!.
The maximum again corresponds to the condition for which
the A1 mode is best localized. The fact that the maximum
again occurs exactly at a value of 1.9 mm~this time forL! is
only a coincidence.

The behavior of the essential mode-characterization pa-
rameters~frequency, incident heterogeneity, and emission
angle! on plate thickness and corrugation periodicity is quite
similar. This is related to their cognate influence on the po-

sition of the intersection points in a mode determination fig-
ure like Fig. 6. Simply put, plate thickness variations lead to
compression or expansion of the dispersion curves in the
same frequency interval while periodicity affects the slope of
the intersection lines. Since the influence is not linear ind or
L, one should be able to determine the relative importance of
those parameters in the deviation from a standard norm by
making ample observations.

Finally, in the following section, we investigate the in-
fluence of another important grating parameter: the height of
the corrugation.

D. Corrugation height 25 mm<h<300 mm (d52.0 mm;
L52.2 mm)

As can be seen from Fig. 23, the variation of the
frequency-heterogeneity requirement for ideal mode stimula-
tion as a function of the corrugation height is not all that
impressive. Over a range of about 300mm, the frequency
shift amounts to only 7–8 kHz while the incident heteroge-
neity coefficient changes only by about 8%.

Unlike plate thickness and corrugation periodicity, the
influence of the height of the corrugation does not appear to
be a large effect~at least not within the limitations of the
Rayleigh assumption!. This means that very sensitive equip-
ment will be needed to capture changes due to height devia-
tions of the corrugation. The same conclusion holds for
slight profile alterations. The situation becomes even far
more complicated when all sample parameters deviate from
their standards at the same time during a manufacturing pro-
cess. Finding out and deciding which corrections are to be
made can be a laborious task.

E. Independence relations

Assuming that attenuation is small or proportional to
frequency, one can verify the following theoretical indepen-

FIG. 22. Critical ~f , binc! positions ~full line connected circles! for the
stimulation of theA1 Lamb mode in the21st diffraction order at normal
incidence as a function of the corrugation periodicity~1.5 mm<L<2.5 mm!
in the case of a brass plate with a sawtooth corrugated upper surface~h550
mm, d52.0 mm!. The dashed line connected filled squares illustrate the
change in emission angle~21st-order diffraction angle! due to the variation
in corrugation periodicity.

FIG. 23. Critical ~f , binc! positions ~full line connected circles! for the
stimulation of theA1 Lamb mode in the21st diffraction order at normal
incidence as a function of the corrugation height~25 mm<h<300 mm! in
the case of a brass plate with a sawtooth corrugated upper surface~d52.0
mm, L52.2 mm!. The dashed line connected filled squares illustrate the
change in emission angle~21st-order diffraction angle! due to the variation
in corrugation height.
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dence relation: Consider two solid plates of the same mate-
rial with similar corrugated surfaces and with uniformly
scaled dimensions: plate 1 is characterized byh1, L1, andd1
and plate 2 is characterized byah1, aL1, andad1. Under
these circumstances it is straightforward to prove that both
plates have the same mode structure, scaled by the parameter
a, i.e., resonances occurring at frequencyf and heterogene-
ity binc on sample 1 will take place in sample 2 at frequency
f /a and heterogeneitybinc/a. This result can be very inter-
esting for applications such as acoustic microscopy and for
NDE laboratory research on scaled models, for instance in
relation to the study of ice dendrites formed by frozen sea-
water in the Arctic or to the investigation of the Earth’s
crust.

In the following section we briefly indicate the impor-
tance of the inhomogeneous wave theory on the description
of bounded beam scattering on periodic surfaces. Going into
more detail would require us to another full manuscript.

IV. APPLICATION TO BOUNDED BEAMS

In previous work7,8 we reported the use of the inhomo-
geneous plane-wave theory in the investigation of reflection
and transmission of bounded Gaussian beams. We showed
that a bounded beam profile can be decomposed into a finite
number of complex harmonic waves and that reflected and
transmitted fields can be obtained by multiplying each inho-
mogeneous wave in the decomposition by its reflection/
transmission coefficient. The differences with Fourier theory
are that afinite number ofinhomogeneouswaves is used in
the decomposition and that all components are propagating
in thesamedirection. We studied the reflection and transmis-
sion of Gaussian beams on layered media with plane parallel
interfaces using this alternative description and noted that the
theoretical description of the scattered fields in reflection and
transmission can be split into two components, one describ-
ing the deformed profile, and the other providing additional
information about the generated leaky surface wave. The
profiles are in good agreement with the results from Fourier
theory. However, the great advantage of using an inhomoge-
neous wave decomposition is that nonspecular reflectivity of
ultrasonic bounded beams is explicitly brought into close
connection to the generation/stimulation of eigenmodes in
the studied structure. Certain inhomogeneous waves are fil-
tered out of the decomposition of the incident beam, which
result in a deformation of the profile and a stimulation of a
particular vibration mode.

Just like in the case of a smooth plate, one can apply the
inhomogeneous plane-wave theory to predict the scattering
of a Gaussian beam in the specular reflection and transmis-
sion direction. It is not our intention to go into details, but we
would like to point out some interesting features about
bounded beam scattering that can be explained using the
alternative inhomogeneous plane-wave description.

As indicated in our previous publications,7 inhomoge-
neous waves with both positive and negative heterogeneity
coefficients are used in the decomposition of a Gaussian
beam. From both theoretical and physical points of view it is
straightforward to show that the reflection coefficients for
any plane wave normally incident on a symmetrically corru-

gated surface satisfy following symmetry relations:
Rm~binc!5R2m~2binc! for m50,1,2,3,4,...~and similarly for
transmission!. Because of this symmetry property the re-
flected and transmitted profiles of a symmetric incident
bounded beam will be symmetric as well. Furthermore, if a
Lamb wave is generated in one direction, the same Lamb
wave will also be generated in opposite direction. In general,
this means that four leaking trailing fields can be observed
~two in reflection and two in transmission!. The big differ-
ence with the case of plane parallel plates using oblique in-
cident bounded beams is that the leaking trailing field of the
generated surface wave now does not have the same direc-
tion as theR0 reflected orT0 transmitted wave~which is
normal to the surface in the case studied here!. The radiation
of the stimulated Lamb wave into the surrounding liquid
occurs at the specific Lamb angle, which coincides with the
direction of one of the diffracted orders. The physical scat-
tering process can thus be interpreted as follows: Certain
inhomogeneous waves are filtered out of the decomposition
of the incident Gaussian beam evoking a symmetrical defor-
mation in the specular reflected and transmitted fields and
creating at the same time the particular leaky plate mode in
both directions inside the plate that radiate into the liquid at
its characteristic critical angle in four directions.

Another interesting result mentioned in Ref. 8 is the fact
that one can actually predict the optimum beamwidth re-
quired for strong generation of plate/interface modes. In the
decomposition of an incident Gaussian beam of~half-!width
W, the inhomogeneous wave with heterogeneity parameter
binc
max52.63/W corresponds to the component with the highest

amplitude. If we now choose the beamwidthW of the Gauss-
ian profile so thatbinc

max coincides with the required heteroge-
neity for maximum stimulation of a particular resonance at
that frequency, we have created an advantageous condition
for extreme generation of that leaky surface wave. For in-
stance in the case of the sawtooth corrugated 2-mm-thick
brass plate considered in Sec. I B we predict that a Gaussian
beam should have a beamwidthW of about 43 mm in order
to obtain efficient generation of theA1 mode at 1.53 MHz.
Under these conditions we will also observe the most intense
leaking fields in plus and minus first diffraction orders. The
determination of the optimum beamwidth for strong genera-
tion of plate/interface modes from a corrugated surface can
be very important in NDT applications where large distances
perpendicular to the surface inside a medium need to be
scanned, or when large amplitude surface waves are sought
in order to study nonlinear effects using eigenmodes.

Since the heterogeneity coefficients of the complex har-
monic waves in the decomposition of a Gaussian beam are
all inverse proportional to the width of the bounded beam,
we can easily translate the independence relations for inho-
mogeneous plane waves, which we discussed in the last para-
graph of Sec. III for the case of bounded beams. Suppose one
needs to investigate the scattering of a bounded beam of
width W at frequencyf from a solid corrugated plate char-
acterized byd, L, andh. If the dimensions of the sample are
not favorable to work with~too large or too small! one can
rescale the problem uniformly to laboratory proportions by a
parametera and work with a plate of identical material com-
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position only now characterized byad, aL, andah. Assum-
ing that attenuation is small or proportional to frequency,
resonances occurring at frequencyf and beamwidthW in the
unscaled sample will take place in the laboratory scaled
sample at a frequencyf /a and a beamwidthaW. As men-
tioned before, this result can be very interesting for applica-
tions such as acoustic microscopy and for NDE laboratory
research on scaled models.

The last remark about bounded beam scattering deals
with the double mode appearance at a single frequency. As
we discussed in Sec. II about the scattering on corrugated
half-spaces, stainless steel has the peculiar property that the
resonance frequency for themth order Rayleigh wave coin-
cides with the resonance frequency for the 2mth order Stone-
ley wave. We also showed that the stimulation of the Ray-
leigh wave and the Stoneley wave occurs for different values
of incident heterogeneity. This has considerable conse-
quences for bounded beam scattering at these double mode
frequencies. If the beamwidth is such that the heterogeneity
of one of the complex harmonic waves in the decomposition
is close to the heterogeneity required to stimulate the Ray-
leigh wave, then both Rayleigh and Stoneley will be stimu-
lated and their leaking fields will be observable in the6mth
order ~5Rayleigh angle! and 62mth order ~590°!. The
specularly reflected and transmitted profiles will be deformed
as the result of the filtering of both surface waves. The
Stoneley wave effect will always be present because the ho-
mogeneous wave is always part of the decomposition of a
Gaussian beam profile. However, as to the effect of the Ray-
leigh wave, this will depend on the beamwidth and in par-
ticular on the relative proximity ofbinc

max~52.63/W! to the
characteristicbinc that is required to stimulate the Rayleigh
wave at that frequency. Another example of a possible mul-
tiple mode generation by a bounded beam can be found by
looking once more at Fig. 6 in the neighborhood of 2.67-
MHz frequency. At that frequency, we observe three candi-
date modes: the Stoneley wave can be stimulated in fourth
order, the symmetricalS1 Lamb wave can be generated in
second order and the symmetricalS3 Lamb mode can be
evoked in the first diffraction order. Again, these modes cor-
respond to different requirements for the heterogeneity coef-
ficients. Depending on the beamwidth of the scanning wave,
they may show up separately or in combinations. They will
interfere inside the plate, but will radiate~to both sides of the
normal! into leaking fields with different far-field directions.

V. BACKSCATTERING: AN ALTERNATIVE
DESCRIPTION

In this paragraph we would like to launch an alternative
concept for the physical mechanism that leads to the obser-
vation of backscattering~backreflection and backtransmis-
sion! when bounded beams interact with plane parallel
plates. Some examples of experimental measurements illus-
trating this feature can be found in Refs. 16–19. Evidently,
the backscattering is largest at the critical angles~Lamb or
Rayleigh angles!. However, using classical reflection and
transmission theory for plane parallel interfaces, there is ab-
solutely no way to account for waves that propagate in a
direction opposite to the incident beam. On the other hand,

we know that a plate~or interface! mode is stimulated when
a bounded beam is incident at each of those critical angles.
The interpretation in terms of the alternative bounded beam
description by inhomogeneous plane waves is that some in-
homogeneous waves are filtered out of the ‘‘spectrum’’ and
stimulate a plate/surface wave, while the others interfere to
create the specular reflected and transmitted fields. This de-
scription is probably only partly correct. The existence of a
plate or surface wave in the solid medium implies that the
interface between the liquid and the solid medium becomes
corrugated. The corrugation periodicity is given by the wave-
length of the Lamb or Rayleigh wave that has been stimu-
lated, which corresponds to the projection of the wavelength
of the incident beam onto the surface. The height of the
corrugation depends on the amplitude of the incident beam,
on the beamwidth and the angle of incidence. In addition, the
grating is moving along the surface with the same frequency
as the incident beam and is damped exponentially in ampli-
tude because of ‘‘reradiation.’’ Since a grating is established
at the interface, the bounded beam~represented by a number
of inhomogeneous plane waves! will scatter into different
diffracted orders. The fact that a grating is produced by a
propagating wave and/or is damped exponentially does not
overrule the scattering principle. On one hand, the directions
of the scattered waves can be obtained by studying the gen-
eralized laws of Snell for corrugated surfaces, exactly as
done in the stationary case. On the other hand, a different
frequency shift per component is induced due to the Doppler
effect of the moving character of the grating.~We do not take
into account the fact that the amplitude of the grating is
decaying exponentially.! In the case of a ‘‘propagating’’ sur-
face grating generated by an inhomogeneous wave incident
in a certain direction, one can easily verify that the minus
second-order scattered component~i.e.,R22 andT22! of any
plane-wave incident in the same direction is the only com-
ponent with the same frequency as the incident wave and
that this component propagates in a mirroring direction of
the specularR0 andT0 fields with respect to the normal on
the interface~i.e., exactly opposite to the incident wave in
reflection!. All other diffracted components are scattered in
different directions and have frequencies that are multiples of
the frequency of the incident wave. The idea is thus that the
backreflected and backtransmitted fields exactly correspond
to the 22nd-order diffracted fields of the~inhomogeneous
waves that build up the! bounded beam. These fields are
produced by scattering off the surface corrugation that has
been created by those inhomogeneous waves in the decom-
position with characteristics that are close to the resonance
requirements. In this context, it is obvious that backscatter-
ing is primarily observed in the proximity of resonance con-
ditions: the corrugation height is only large enough to pro-
duce scattering at the critical angles where Lamb or Rayleigh
waves are stimulated. In addition, this interpretation leads to
a better understanding of the role of the beamwidth on the
backscattering intensity. From a theoretical point of view,
the beamwidth determines the nature of the inhomogeneous
waves in its decomposition. Depending on the heterogeneity
coefficients involved in the decomposition and on the local-
ity of the characteristic Lamb or Rayleigh heterogeneity in
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this arrangement, the resonance conditions will be either
more or less favorable. This means that the height of the
surface corrugation will strongly depend on the beamwidth
of the incident beam, and as a consequence also the back-
scattering itself.

So far, this alternative concept of backscattering is only
qualitative. We hope to develop a more quantitative model
that includes intensity predictions in the near future.

VI. CONCLUSION

We illustrated that, in general, only complex harmonic
waves can stimulate eigenvibrations of structures with either
smooth parallel interfaces or periodic corrugated rough sur-
faces. It was shown that the location of the modes for a
corrugated specimen can be deduced from the dispersion
curves of a sample with plane parallel interfaces. Examples
are provided showing the influence of sample thickness, cor-
rugation profile, height, and periodicity on the characteristics
of a particular mode.

Qualitatively we applied the complex harmonic wave
reflection and transmission properties to examine the defor-
mation of Gaussian profiles on periodic rough surfaces at
normal incidence. Doing this, one can explicitly link the
beam deformation to the stimulation of mode vibrations.
Symmetry properties, beamwidth influence, and multiple
mode occurrence can all be interpreted in a meaningful way
in terms of complex harmonic waves.

We also showed that the determination of the required
heterogeneity coefficient of a mode stimulating inhomoge-
neous wave is necessary for the prediction of the optimum
beamwidth when seeking strong plate/surface wave genera-
tion using bounded beam scattering on periodic rough sur-
faces. These high amplitude eigenmodes can be used in lin-
ear and nonlinear NDT applications.

We also discussed an alternative approach of back-
scattering by combining inhomogeneous wave mode stimu-
lation and scattering from periodic corrugated surfaces.
Backreflection and backtransmission correspond to the22nd
diffraction order of a bounded beam scattered from the mov-
ing corrugated surface that it created itself. Near resonance
this corrugation is largest which explains why backscattering
is primarily observed at critical angles. The inhomogeneous
wave theory also provided a plausible explanation for the
beamwidth dependence of the backscattering.
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